SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: NMPS(19HS0833)
Year \& Sem: II-B.Tech \&II-Sem

Course \& Branch: B.Tech - CE
Regulation: R19

UNIT -I
 SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS, INTERPOLATION

1	Find out the square root of 25 given $x_{0}=2.0, x_{1}=7.0$ using Bisection method.							[L1][CO1]	[12M]
2	Find a positive root of $x^{3}-x-1=0$ correct to two decimal places by Bisection method							[L1][CO1]	[12M]
3	Find a positive root of $f(x)=\mathrm{e}^{\mathrm{x}}-3$ correct to two decimal places by Bisection method							[L1][CO1]	[12M]
4	Find a real root of the equation $x e^{x}-\cos x=0$ using Newton - Raphson method							[L1][CO1]	[12M]
5	Using Newton-Raphson method (i) Find square root of 28 (ii) Find cube root of 15							[L3][CO1]	[12M]
6	a. Using Newton-Raphson method Find reciprocal of 12. b. Find a real root of the equation $x \tan x+1=0$ using Newton - Raphson method							$[\mathrm{L} 1][\mathrm{CO} 1]$	$\begin{aligned} & {[\mathbf{0 6 M}]} \\ & {[06 \mathrm{M}]} \end{aligned}$
7	Find out the root of the equation $x \log _{10}(x)=1.2$ using False position method.							[L1][CO1]	[12M]
8	Find the root of the equation $x e^{x}=2$ using Regula-falsi method.							[L1][CO1]	[12M]
9	From the following table values of x and $y=\tan x$. Interpolate values of y when $x=0.12$ and $x=0.28$.							[L1][CO1]	[12M]
10	a. Using Newton's forward interpolation formula and the given table of value Obtain the value of $f(x)$ when $x=1.4$.							[L3][CO1]	[06M]
	b. Use Newton's backward interpolation formula to find $f(32)$ given $f(25)=0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$.							[L3][CO1]	[06M]

UNIT -II
 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS, NUMERICAL INTEGRATIONS

1	Tabulate $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ using Taylor's series method given that $y^{1}=y^{2}+x$ and $y(0)=1$	[L6][CO2]	[12M]
2	Using Taylor's series method find an approximate value of y at $\mathrm{x}=0.2$ for the D.E $y^{1}-2 y=3 e^{x}, y(0)=0$. Compare the numerical solution obtained with exact solution.	[L3][CO2]	[12M]
3	a. Solve $y^{1}=x+y$, given $\mathrm{y}(1)=0$ find $\mathrm{y}(1.1)$ and $\mathrm{y}(1.2)$ by Taylor's series method. b. Solve by Euler's method $\frac{d y}{d x}=\frac{2 y}{x}$ given $y(1)=2$ and find $y(2)$.	$\begin{aligned} & \hline \text { [L3][CO2] } \\ & {[\mathrm{L} 3][\mathrm{CO} 2]} \end{aligned}$	$\begin{aligned} & {[\mathbf{0 6 M}]} \\ & {[06 \mathrm{M}]} \end{aligned}$
4	Using Euler's method, find an approximate value of y corresponding to $x=1$ given that $\frac{d y}{d x}=x+y$ and $y=1$ when $x=0$ taking step size $h=0.1$	[L3][C02]	[12M]
5	a. Using Euler's method $y^{\prime}=y^{2}+x, \mathrm{y}(0)=1$. Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ b.Using Runge - Kutta method of fourth order, compute $\mathrm{y}(0.2)$ from $y^{1}=x y \mathrm{y}(0)=1$, taking $\mathrm{h}=0.2$	$\begin{aligned} & \hline[\mathrm{L} 3][\mathrm{CO} 2] \\ & {[\mathrm{L} 3][\mathrm{CO} 2]} \end{aligned}$	$\begin{aligned} & {[\mathbf{0 6 M}]} \\ & {[06 \mathrm{M}]} \end{aligned}$
6	Using R-K method, evaluate $y(0.1)$ and $y(0.2)$ given $y^{1}=x+y ; y(0)=1$.	[L3][CO2]	[12M]
7	Using R-K method of $4^{\text {th }}$ order find $\mathrm{y}(0.1), \mathrm{y}(0.2)$ and $\mathrm{y}(0.3)$ given that $\frac{d y}{d x}=1+x y, y(0)=2$.	[L3][CO2]	[12M]
8	And $\mathrm{y}^{1}(0)=0$ taking $\mathrm{h}=0.2$	[L3][CO2]	[12M]
9	Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ (i) by Trapezoidal rule and Simpson's $\frac{1}{3}$ rule. (ii) using Simpson's $\frac{3}{8}$ rule and compare the result with actual value.	[L5][CO2]	[12M]
10	a. Compute $\int_{0}^{4} e^{x} d x$ by simpson's $\frac{3}{8}$ rule with 12 sub divisions. b.Compute $\int_{3}^{7} x^{2} \log x d x$ by Trapezoidal rule and simpson's $\frac{1}{3}$ rule by taking 10 sub divisions.	$\begin{aligned} & {[\mathrm{L} 5][\mathrm{CO} 2]} \\ & {[\mathrm{L} 5][\mathrm{CO} 2]} \end{aligned}$	$\begin{aligned} & {[06 \mathrm{M}]} \\ & {[06 \mathrm{M}]} \end{aligned}$

UNIT-III

BASIC STATISTICS\&BASIC PROBABILITY

	b) The probability that students A, B, C,D solve the problem are $\begin{array}{lll}1 & 2 & 1 \\ 3 & \overline{5}\end{array}, \frac{1}{5}$ and $\frac{1}{4}$ respectively If all of them try to solve the problem, what is the probability that the problem is solved.	[L6][CO3]	[06M]
9	Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be theevent that at least one number is 6 . Find (i) $\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ (ii) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})$ (iii) $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cup \mathrm{B}^{\mathrm{c}}\right)$ (iv) $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}\right)$ (v) $\mathrm{P}\left(\mathrm{A} \cap B^{c}\right)$	[L1][C03]	[12M]
10	In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find theprobability that the student is a girl? (c) a boy.	[L6][CO3]	[12M]

UNIT IV

RANDOM VARIABLES

1 Two dice are thrown. Let X assign to each point (a, b) in S the maximum of its numbers i.e, $\mathrm{X}(\mathrm{a}, \mathrm{b})=\max (\mathrm{a}, \mathrm{b})$. Find the probability distribution. X is a random variable with $X(s)=\{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution.										[L1][CO4]	[12M]
2	A random variable X has the following probability function									[L5][CO4]	[12M]
3	a) Find the mean a_{1} nd variance of the uniform probability distribution given by $f(x)=\frac{1}{n}$ for $x=1,2, \ldots, n$. b)If a random variable has a Probability density $\mathrm{f}(\mathrm{x})$ as $f(x)=\left\{\begin{array}{l}2 e^{-2 x}, \text { for } x>0 \\ (0, \text { for } x \leq 0\end{array}\right.$ Find the Probabilities that it will take on a value (i) Between $1 \& 3$ (ii) Greater than 0.5									[L1][CO4] [L6][CO4]	[06M] $[06 \mathrm{M}]$
4	Probability density function of a random variable X is $f(x)=\left\{\begin{array}{l}1 \frac{1}{2} \sin x, \text { for } 0 \leq x \leq \pi \\ 0, \text { elsewhere }\end{array}\right.$. Find the mean, mode and median of the distribution and also find the probability between 0 and $\pi / 2$.									[L6][CO4]	[12M]
5	a) Probability density function $f(x)=\left\{\begin{array}{l}k\left(3 x^{2}-1\right), \text { in }-1 \leq x \leq 2 \\ 0, \text { elsewhere }\end{array}\right.$. i) Find the value of k. ii) Find the probability $(-1 \leq x \leq 0)$ b) The probability density function of a random variable x is $f(x)=$ $k x(x-1) ; 1 \leq x \leq 4$ $\left\{\begin{array}{c}0 ; \text { elsewhere }\end{array}\right.$ And $P(1 \leq x \leq 3)=\frac{28}{3}$ Find the value of k									[L1][CO4] [L6][CO4]	$[06 \mathrm{M}]$ $[06 \mathrm{M}]$
6	For the continuous probability function $f(x)=\left\{^{k x^{2} e^{-x}}\right.$ when $x \geq 0$ 0 ;elsewhere Find i) k ii) Mean iii) Variance.									[L1][CO4]	[12M]
7	a) Define Probability density function. b) A continuous random variable x has the distribution function $F(x)=\left\{\begin{array}{c} 0 \text { if } x \leq 1 \\ \left\{k(x-1)^{4} ; 1<x \leq 3\right. \\ 0 ; x>3 \end{array}\right.$ Find the value of k and the probability density function of x .										$\begin{aligned} & {[02 \mathrm{M}]} \\ & {[10 \mathrm{M}]} \end{aligned}$
8	a) Define Proba b) A random va	ility D iable x x $P(x)$ $d i) k$	Distribu has the ii) Mea		ction ing p 3 5 k arian	obabilit	$\begin{gathered} \text { distri } \\ \hline 5 \\ \hline 9 \mathrm{k} \end{gathered}$	ion		$\begin{aligned} & \hline \text { [L1][CO4] } \\ & \text { [L6][CO4] } \end{aligned}$	$\begin{aligned} & {[\mathbf{0 2 M}]} \\ & {[10 \mathrm{M}]} \end{aligned}$
9	A random variab	x has x $P(x)$ di) k		owing -2 0.1 an iii)	proba -1 k Vari		tributi 1 2 k	functi 2 0.4	3	[L6][CO4]	[12M]
10	A random varia $\begin{array}{\|c\|} \hline \mathrm{x} \\ \hline \mathrm{P}(\mathrm{x}) \\ \hline \mathrm{F} \end{array}$		the foll 2 2 2 k ii) $\mathrm{P}(\mathrm{X}$		prob 4 4 4	lity 5 5 5 k 5$).$	rributi 6 6 k	7 7	8 8	[L1][CO4]	[12M]

UNIT V

PROBABILITY DISTRIBUTIONS AND CORRELATION

Prepared by
P.Usha
(B.S\&H) Dept

